基本信息
源码名称:Spring boot基于redis实现附近的人
源码大小:21.35M
文件格式:.zip
开发语言:Java
更新时间:2019-07-19
   友情提示:(无需注册或充值,赞助后即可获取资源下载链接)

     嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300

本次赞助数额为: 2 元 
   源码介绍
Spring boot基于Redis Hash数据结构实现附近的人Demo,框架由Spring-boot实现,压缩包含源码以及部署jar包。代码清晰,有注释,考虑性能优化

package com.karle.redis.biz;

import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.stereotype.Service;

import com.alibaba.fastjson.JSONObject;
import com.karle.redis.dao.RedisDao;
import com.karle.redis.vo.NearbyBO;
import com.karle.redis.vo.NearbyPO;
import com.karle.redis.vo.Result;

/**
 * 博客:http://csdn.karle.vip/
 * 
 * @author Karle
 *
 */
@Service
public class NearbyBiz {

	/** 2017-09-01 毫秒值/1000 (秒) **/
	private static final int BASE_SORT_NUM = 1504195200;

	/** 最大距离 **/
	private static final int MAX_DISTANCE = 3000;

	/** 8小时(秒) **/
	private static final int EIGHT_HOUR_SECOND = 60 * 60 * 8;

	/** 附近的人缓存key值,p1-城市编号,p2-地区编号 **/
	private static final String NEARBY_CACHE_KEY = "nearby_%s_%s";

	/** 附近的人用户缓存key值,p1-城市编号,p2-地区编号,p3-用户id **/
	private static final String NEARBY_USER_CACHE_KEY = "nearby_user_%s_%s_%s";

	@Autowired
	private RedisDao redisDao;

	// 线程池
	@Autowired
	private ThreadPoolTaskExecutor threadPoolTaskExecutor;

	// 附近的人最新版
	public Result<List<NearbyBO>> nearbyNew(NearbyPO paramObj) {
		// 缓存key值
		String cacheKey = String.format(NEARBY_CACHE_KEY, paramObj.getCityCode(), paramObj.getAdCode());
		long currentTimeMillis = System.currentTimeMillis();

		// 设置当前用户缓存时间
		paramObj.setSaveTime(currentTimeMillis);

		// 使用hash更加快速的定位到用户缓存信息,便于删除更新
		redisDao.hset(cacheKey, paramObj.getId()   "", JSONObject.toJSONString(paramObj));

		// 从当前地区缓存中获取全部用户(包括用户自己)
		Map<String, String> cacheAll = redisDao.hGetAll(cacheKey);
		if (cacheAll.isEmpty() || cacheAll.size() == 1) {
			return new Result<List<NearbyBO>>(true, new ArrayList<>());
		}

		// 结果集,-1是要排除用户自己
		List<NearbyBO> result = new ArrayList<NearbyBO>(cacheAll.size() - 1);

		for (String item : cacheAll.keySet()) {
			NearbyPO cacheData = JSONObject.parseObject(cacheAll.get(item), NearbyPO.class);

			// 计算缓存时长
			long twoDayMinute = (cacheData.getSaveTime() - currentTimeMillis) / 60000;
			// 八小时有效
			if (twoDayMinute > 480) {
				// 被动触发删除过期缓存
				redisDao.hdel(cacheKey, paramObj.getId()   "");
				continue;
			}
			// 排除用户自己
			if (paramObj.getId().equals(cacheData.getId())) {
				continue;
			}
			double distance = countDistance(paramObj.getLongitude(), paramObj.getLatitude(), cacheData.getLongitude(),
					cacheData.getLatitude());
			// 10KM之内有效
			if (distance > 10000) {
				continue;
			}
			result.add(new NearbyBO(cacheData.getId(), cacheData.getName(), distance));
		}
		return new Result<List<NearbyBO>>(true, result);
	}

	// 附近的人
	@Deprecated
	public Result<List<NearbyBO>> nearby(NearbyPO paramObj) {
		int nowSortNum = (int) (new Date().getTime() / 1000);
		// 此处仅为了减低排序的序号( 获取缓存集合最大排序下标)
		int endIndex = nowSortNum - BASE_SORT_NUM;

		// 缓存key值
		String cacheKey = String.format(NEARBY_CACHE_KEY, paramObj.getCityCode(), paramObj.getAdCode());

		// 取同一城市地区&&八小时区间范围数据(八小时之前缓存数据会删除)
		Set<String> redisNearby = redisDao.getSetByKeyAndScore(cacheKey, endIndex - EIGHT_HOUR_SECOND, endIndex);

		// 开启新线程写入数据(让主线程“专心”处理主业务)
		threadPoolTaskExecutor.execute(new InsertCache(paramObj, cacheKey, endIndex));

		if (redisNearby.size() == 0)
			return new Result<List<NearbyBO>>(false, "附近查无用户", null);

		List<NearbyBO> result = new ArrayList<NearbyBO>(redisNearby.size());
		boolean oneself = true;
		for (String item : redisNearby) {
			NearbyPO cacheNearby = JSONObject.parseObject(item, NearbyPO.class);
			// 缓存里可能有用户自己
			if (cacheNearby.getId().intValue() == paramObj.getId())
				continue;
			double distance = countDistance(paramObj.getLongitude(), paramObj.getLatitude(), cacheNearby.getLongitude(),
					cacheNearby.getLatitude());
			// 大于限定距离
			if (distance > MAX_DISTANCE)
				continue;
			result.add(new NearbyBO(cacheNearby.getId(), cacheNearby.getName(), distance));
			oneself = false;
		}
		if (oneself)
			return new Result<List<NearbyBO>>(false, "附近查无用户", null);
		return new Result<List<NearbyBO>>(true, "获取成功", result);
	}

	// 把用户定位信息写入缓存
	private class InsertCache implements Runnable {
		// 用户提交的最新坐标信息
		private NearbyPO paramObj;
		// “附近的人”缓存集合key
		private String cacheKey;
		// 获取缓存集合最大排序下标
		private Integer endIndex;

		public InsertCache(NearbyPO paramObj, String cacheKey, Integer endIndex) {
			this.paramObj = paramObj;
			this.cacheKey = cacheKey;
			this.endIndex = endIndex;
		}

		@Override
		public void run() {
			String userCacheKey = String.format(NEARBY_USER_CACHE_KEY, paramObj.getCityCode(), paramObj.getAdCode(),
					paramObj.getId());
			String cacheNewData = JSONObject.toJSONString(paramObj);
			String cacheUserPosition = redisDao.getOneStringByKey(userCacheKey);
			// 确保用户坐标信息缓存清除慢于“附近的人”坐标信息
			redisDao.setOneStringByKey(userCacheKey, cacheNewData, EIGHT_HOUR_SECOND   60);

			// 保存用户坐标信息至“附近的人”缓存集合
			redisDao.addOneStringToZSet(cacheKey, cacheNewData, cacheUserPosition, endIndex);
		}

	}

	/**
	 * 计算两经纬度点之间的距离(单位:米)
	 * 
	 * @param longitude1
	 *            坐标1经度
	 * @param latitude1
	 *            坐标1纬度
	 * @param longitude2
	 *            坐标2经度
	 * @param latitude2
	 *            坐标1纬度
	 * @return
	 */
	private static double countDistance(double longitude1, double latitude1, double longitude2, double latitude2) {
		double radLat1 = Math.toRadians(latitude1);
		double radLat2 = Math.toRadians(latitude2);
		double a = radLat1 - radLat2;
		double b = Math.toRadians(longitude1) - Math.toRadians(longitude2);
		double s = 2 * Math.asin(Math.sqrt(
				Math.pow(Math.sin(a / 2), 2)   Math.cos(radLat1) * Math.cos(radLat2) * Math.pow(Math.sin(b / 2), 2)));
		s = s * 6378137.0;
		s = Math.round(s * 10000) / 10000;
		return s;
	}

}