基本信息
源码名称:鸢尾花
源码大小:0.31M
文件格式:.ipynb
开发语言:Python
更新时间:2024-04-09
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
鸢尾花图像显示
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import pandas as pd
TRAIN_URL ="http://download.tensorflow.org/data/iris_training.csv"
train_path = tf.keras.utils.get_file (" iris_trainning.csV ", TRAIN_URL )
COLUMN_NAMES =['SepalLength','SepalWidth','PetalLength','PetalWidth','Species']
df_iris = pd.read_csv(train_path, names = COLUMN_NAMES, header =0)
iris = np.array( df_iris )
fig = plt.figure ('Iris Data', figsize =(15,15))
fig.suptitle ("Anderson's Iris Data Set\n( Bule -> Setosa | Red -> Versicolor | Green -> Virginica )", fontsize=20)
for i in range (4):
for j in range (4):
plt.subplot (4,4,4*i ( j 1))
if ( i == j ):
plt.hist(iris[:, i], align='mid', color='blue', edgecolor='black')
else :
plt.scatter( iris [:, j ], iris [:, i ], c = iris [:,4], cmap ='brg')
if (i==0):
plt.title ( COLUMN_NAMES[j])
if ( j ==0):
plt.ylabel ( COLUMN_NAMES[i])
plt.show ()
鸢尾花图像显示
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import pandas as pd
TRAIN_URL ="http://download.tensorflow.org/data/iris_training.csv"
train_path = tf.keras.utils.get_file (" iris_trainning.csV ", TRAIN_URL )
COLUMN_NAMES =['SepalLength','SepalWidth','PetalLength','PetalWidth','Species']
df_iris = pd.read_csv(train_path, names = COLUMN_NAMES, header =0)
iris = np.array( df_iris )
fig = plt.figure ('Iris Data', figsize =(15,15))
fig.suptitle ("Anderson's Iris Data Set\n( Bule -> Setosa | Red -> Versicolor | Green -> Virginica )", fontsize=20)
for i in range (4):
for j in range (4):
plt.subplot (4,4,4*i ( j 1))
if ( i == j ):
plt.hist(iris[:, i], align='mid', color='blue', edgecolor='black')
else :
plt.scatter( iris [:, j ], iris [:, i ], c = iris [:,4], cmap ='brg')
if (i==0):
plt.title ( COLUMN_NAMES[j])
if ( j ==0):
plt.ylabel ( COLUMN_NAMES[i])
plt.show ()