基本信息
源码名称:机器学习和和对应的笔记
源码大小:8.37M
文件格式:.pdf
开发语言:Python
更新时间:2019-11-19
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
斯坦福大学 2014 机器学习教程 个人笔记(V5.4)
斯坦福大学 2014 机器学习教程 个人笔记(V5.4)
目录 第 1 周 ..............................................................................................................................................1 1、 引言(Introduction)....................................................................................................1 1.1 欢迎............................................................................................................................1 1.2 机器学习是什么?....................................................................................................4 1.3 监督学习....................................................................................................................6 1.4 无监督学习..............................................................................................................10 2、 单变量线性回归(Linear Regression with One Variable) ........................................15 2.1 模型表示..................................................................................................................15 2.2 代价函数..................................................................................................................17 2.3 代价函数的直观理解 I............................................................................................19 2.4 代价函数的直观理解 II...........................................................................................20 2.5 梯度下降..................................................................................................................21 2.6 梯度下降的直观理解..............................................................................................24 2.7 梯度下降的线性回归..............................................................................................27 2.8 接下来的内容..........................................................................................................29 3、 线性代数回顾(Linear Algebra Review)...................................................................30 3.1 矩阵和向量..............................................................................................................30 3.2 加法和标量乘法......................................................................................................31 3.3 矩阵向量乘法..........................................................................................................32 3.4 矩阵乘法..................................................................................................................33 3.5 矩阵乘法的性质......................................................................................................34 3.6 逆、转置..................................................................................................................35 第 2 周 ............................................................................................................................................36 4、 多变量线性回归(Linear Regression with Multiple Variables)................................36 4.1 多维特征..................................................................................................................36 4.2 多变量梯度下降......................................................................................................37 4.3 梯度下降法实践 1-特征缩放 .................................................................................39 4.4 梯度下降法实践 2-学习率 .....................................................................................40 4.5 特征和多项式回归..................................................................................................41 4.6 正规方程..................................................................................................................42 4.7 正规方程及不可逆性(选修)..............................................................................44 5、 Octave 教程(Octave Tutorial)..................................................................................47 5.1 基本操作..................................................................................................................47 5.2 移动数据..................................................................................................................54 5.3 计算数据..................................................................................................................62 5.4 绘图数据..................................................................................................................70 5.5 控制语句:for,while,if 语句 .............................................................................76 5.6 向量化......................................................................................................................82 5.7 工作和提交的编程练习..........................................................................................86 第 3 周 ............................................................................................................................................88 6、 逻辑回归(Logistic Regression)................................................................................88 6.1 分类问题..................................................................................................................88 II 6.2 假说表示..................................................................................................................90 6.3 判定边界..................................................................................................................92 6.4 代价函数..................................................................................................................94 6.5 简化的成本函数和梯度下降..................................................................................98 6.6 高级优化................................................................................................................101 6.7 多类别分类:一对多............................................................................................105 7、 正则化(Regularization) .........................................................................................108 7.1 过拟合的问题........................................................................................................108 7.2 代价函数................................................................................................................110 7.3 正则化线性回归....................................................................................................112 7.4 正则化的逻辑回归模型........................................................................................113 第 4 周 ..........................................................................................................................................115 8、 神经网络:表述(Neural Networks: Representation)...........................................115 8.1 非线性假设............................................................................................................115 8.2 神经元和大脑........................................................................................................117 8.3 模型表示 1.............................................................................................................121 8.4 模型表示 2.............................................................................................................124 8.5 特征和直观理解 1.................................................................................................126 8.6 样本和直观理解 II.................................................................................................128 8.7 多类分类................................................................................................................130 第 5 周 ..........................................................................................................................................131 9、 神经网络的学习(Neural Networks: Learning) .....................................................131 9.1 代价函数................................................................................................................131 9.2 反向传播算法........................................................................................................133 9.3 反向传播算法的直观理解....................................................................................136 9.4 实现注意:展开参数............................................................................................138 9.5 梯度检验................................................................................................................139 9.6 随机初始化............................................................................................................141 9.7 综合起来................................................................................................................142 9.8 自主驾驶................................................................................................................143 第 6 周 ..........................................................................................................................................146 10、 应用机器学习的建议(Advice for Applying Machine Learning) ...........................146 10.1 决定下一步做什么..............................................................................................146 10.2 评估一个假设......................................................................................................149 10.3 模型选择和交叉验证集......................................................................................151 10.4 诊断偏差和方差..................................................................................................153 10.5 正则化和偏差/方差............................................................................................155 10.6 学习曲线..............................................................................................................157 10.7 决定下一步做什么..............................................................................................159 11、 机器学习系统的设计(Machine Learning System Design) ...................................161 11.1 首先要做什么......................................................................................................161 11.2 误差分析..............................................................................................................162 11.3 类偏斜的误差度量..............................................................................................165 11.4 查准率和查全率之间的权衡..............................................................................166 III 11.5 机器学习的数据..................................................................................................168 第 7 周 ..........................................................................................................................................172 12、 支持向量机(Support Vector Machines) ...............................................................172 12.1 优化目标..............................................................................................................172 12.2 大边界的直观理解..............................................................................................178 12.3 大边界分类背后的数学(选修).......................................................................183 12.4 核函数 1...............................................................................................................190 12.5 核函数 2...............................................................................................................192 12.6 使用支持向量机..................................................................................................194 第 8 周 ..........................................................................................................................................197 13、 聚类(Clustering)....................................................................................................197 13.1 无监督学习:简介..............................................................................................197 13.2 K-均值算法 ...........................................................................................................200 13.3 优化目标..............................................................................................................202 13.4 随机初始化..........................................................................................................203 13.5 选择聚类数..........................................................................................................204 14、 降维(Dimensionality Reduction)...........................................................................207 14.1 动机一:数据压缩..............................................................................................207 14.2 动机二:数据可视化..........................................................................................210 14.3 主成分分析问题..................................................................................................211 14.4 主成分分析算法..................................................................................................213 14.5 选择主成分的数量..............................................................................................214 14.6 重建的压缩表示..................................................................................................215 14.7 主成分分析法的应用建议..................................................................................217 第 9 周 ..........................................................................................................................................218 15、 异常检测(Anomaly Detection) .............................................................................218 15.1 问题的动机..........................................................................................................218 15.2 高斯分布..............................................................................................................220 15.3 算法......................................................................................................................221 15.4 开发和评价一个异常检测系统..........................................................................223 15.5 异常检测与监督学习对比..................................................................................224 15.6 选择特征..............................................................................................................225 15.7 多元高斯分布(选修)......................................................................................227 15.8 使用多元高斯分布进行异常检测(选修)......................................................230 16、 推荐系统(Recommender Systems).......................................................................233 16.1 问题形式化..........................................................................................................233 16.2 基于内容的推荐系统..........................................................................................235 16.3 协同过滤..............................................................................................................237 16.4 协同过滤算法......................................................................................................239 16.5 向量化:低秩矩阵分解......................................................................................240 16.6 推行工作上的细节:均值归一化......................................................................242 第 10 周 ........................................................................................................................................243 17、 大规模机器学习(Large Scale Machine Learning).................................................243 17.1 大型数据集的学习..............................................................................................243 IV 17.2 随机梯度下降法..................................................................................................244 17.3 小批量梯度下降..................................................................................................245 17.4 随机梯度下降收敛..............................................................................................246 17.5 在线学习..............................................................................................................248 17.6 映射化简和数据并行..........................................................................................250 18、 应用实例:图片文字识别(Application Example: Photo OCR) ............................251 18.1 问题描述和流程图..............................................................................................251 18.2 滑动窗口..............................................................................................................252 18.3 获取大量数据和人工数据..................................................................................254 18.4 上限分析:哪部分管道的接下去做..................................................................255 19、 总结(Conclusion)...................................................................................................256 19.1 总结和致谢..........................................................................................................256 附件 ..............................................................................................................................................258 机器学习的数学基础...........................................................................................................258 高等数学.......................................................................................................................258 线性代数.......................................................................................................................266 概率论和数理统计.......................................................................................................276